Hierarchical Part-Based Detection of 3D Flexible Tubes: Application to CT Colonoscopy

نویسندگان

  • Adrian Barbu
  • Luca Bogoni
  • Dorin Comaniciu
چکیده

In this paper, we present a learning-based method for the detection and segmentation of 3D free-form tubular structures, such as the rectal tubes in CT colonoscopy. This method can be used to reduce the false alarms introduced by rectal tubes in current polyp detection algorithms. The method is hierarchical, detecting parts of the tube in increasing order of complexity, from tube cross sections and tube segments to the whole flexible tube. To increase the speed of the algorithm, candidate parts are generated using a voting strategy. The detected tube segments are combined into a flexible tube using a dynamic programming algorithm. Testing the algorithm on 210 unseen datasets resulted in a tube detection rate of 94.7% and 0.12 false alarms per volume. The method can be easily retrained to detect and segment other tubular 3D structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

A Hierarchical Production Planning and Finite Scheduling Framework for Part Families in Flexible Job-shop (with a case study)

Tendency to optimization in last decades has resulted in creating multi-product manufacturing systems. Production planning in such systems is difficult, because optimal production volume that is calculated must be consistent with limitation of production system. Hence, integration has been proposed to decide about these problems concurrently. Main problem in integration is how we can relate pro...

متن کامل

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL

This paper presents a new automatic 3D mesh-based centerline extraction (3D-MCE) algorithm, which allows an accurate extraction of 3D centerline from a tubular geometry form, without manned intervention. The 3DMCE does not require any input parameters and works on polygon mesh vertices producing a thin, connected and centered centerline, without needing pre or post-processing stages. In order t...

متن کامل

Application of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors

One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...

متن کامل

Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography.

One of the major challenges in computer-aided detection (CAD) of polyps in CT colonography (CTC) is the reduction of false-positive detections (FPs) without a concomitant reduction in sensitivity. A large number of FPs is likely to confound the radiologist's task of image interpretation, lower the radiologist's efficiency, and cause radiologists to lose their confidence in CAD as a useful tool....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 9 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006